### Article

## On Quasi-Gasdynamic System of Equations with General Equations of State and its Application

A quasi-gasdynamic system of equations with a mass force and a heat source is well known in the case of the perfect polytropic gas. In the paper, the system is generalized to the case of general equations of gas state satisfying thermodynamic stability conditions. The entropy balance equation is studied. The validity of the non-negativity property is algebraically analyzed for the entropy production. Two different forms of writing are derived for its relaxation summands. Under a condition on the heat source intensity, the property is valid.

An application to one-dimensional Euler real gas dynamics equations is given. A two-level explicit symmetric in space finite-difference scheme is constructed. The scheme is tested in the cases of the stiffened gas and the Van der Waals gas equations of state.

We construct asymptotic solutions of the Navier-Stokes equations describing periodic systems of vortex filaments filling a three-dimensional volume. Such solutions are related to certain topological invariants of divergence-free vector fields on the two-dimensional torus. The equations describing the evolution of such a structure are defined on a graph which is the set of trajectories of a divergence-free field.

This paper investigated the household consumption behavior in Russia. The model assumes that household consumption can be described by the Euler equation. Using panel data on households (Russian Longitudinal Monitoring Survey–Higher School of Economics [RLMSHSE]) from 2000 to 2011, we obtained the estimates of the elasticity of intertemporal substitution.

For the quasi-gasdynamic system of equations, there holds the law of nondecreasing entropy. Difference methods based on this system have been successfully used in numerous applications and test gasdynamic computations. In theoretical terms, however, for standard spatial discretizations of this system, the nondecreasing entropy law does not hold exactly even in the one-dimensional case because of the mesh imbalance terms. For the quasi-gasdynamic equations, a new conservative spatial discretization is proposed for which the entropy balance equation has an appropriate form and the entropy production is guaranteed to be nonnegative (which also holds in the presence of body forces and heat sources). An important element of this discretization is that it makes use of nonstandard space-averaging techniques, including a nonlinear "logarithmic" averaging of the density and internal energy. The results hold on arbitrary nonuniform meshes

This paper investigates household consumption behavior in Russia. The model assumes that household consumption can be determined both by Euler equation and the rule of thumb. Using panel data on households (RLMS-HSE) from 2000 to 2011, we present estimates of elasticity of intertemporal substitution and show that an essential part of households consume part of their current income and do not solve optimization problem

In this paper, we investigate the consumption Euler equation for the Russian households under Epstein and Zin (1989) preferences. Firstly, we investigate the impact of liquidity constraints and non-tradable assets on the Euler equation, and then use these theoretical results for the estimation and testing. We get the estimate of the elasticity of intertemporal substitution, which is significantly higher than zero and lower than one. We also show that borrowing constraints have a significant impact on the consumption dynamics, while the hypothesis about lending constraints is not supported by the data.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.